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Abstract — Recently, the use of learning technologies 
within digital game logic has been questioned as 
presenting an unnecessary level of control complexity, 
coupled with issues in reliably testing AI-based behavior 
and biases that are an emergent property of a learning 
process. These criticisms resonate in the context of game-
side augmentation. Rather than strictly limiting a learning 
AI to an opposing, antagonist role, this paper proposes a 
complementary scheme wherein an automated planner / 
reinforcement learner aids in the decision-making process 
of the human player. This proposed system offers real-
time, contextual objectives to an individual player, based 
on cohesive feedback provided by a runtime multi-agent 
system coordinating players towards common goals.
This paper outlines, investigates and proposes a series of 
improvements associated with decision making processes 
when faced with uncertainty in high speed reactive Finite 
State Machine (FSM) architectures, allowing for greater 
refinement through adapt ive state transit ions. 
Furthermore, this paper investigates recent proposals in 
Artificial Intelligence (AI) based decision making 
technology emerging from UC Berkeley’s RiseLab that 
combines “slow” cloud-based behavior refinement 
techniques with “fast” reactive techniques operating at a 
network edge.
FSMs present issues for programmers principally due to 
limited standardization, testing infrastructure and 
adaptability. This paper examines current implementations 
of finite state behaviors specifically in the context of AI-
applied digital games and proposes player augmentation 
improvements through the use of “fast” reinforcement 
learning coupled with “slow” policy planning.
Ultimately, AI augmented human interaction techniques 
have a broader scope beyond digital gaming and are 
emerging as a key capability for a wide variety of AI 
deployments in many fields.

Valence: ˈvāləns
• relating to or denoting electrons involved in or 

available for chemical bond formation
• the linguistic elements that make a discourse 

semantically coherent including the number of 
grammatical elements with which a particular 
word, especially a verb, combine in a sentence

• the emotional and social bonds among members 
of a community, organization and society

Index Terms — machine learning, reinforcement learning, 
artificial intelligence, finite state machines, modeling, serious 
games, Monte Carlo simulation

I. INTRODUCTION

Alex Pentland [1] in his 2014 book “Social Physics — 
How Social Networks can Make Us Smarter” [2] sees 
social cohesion as the tendency to create structures that 
are cooperative, productive and creative. Klaus Jaffe in 
his 2006 paper “Simulations Show that Shame Drives 
Social Cohesion” [3] offers that “as far back as Plato 
(427-347 BCE) we have recognized that feelings of 
shame are fundamental for the maintenance of social 
cohesion,” thereby suggesting there are more nuanced 
aspects to maintaining cohesive behaviors.

Pentland goes on to point out that “to understand our 
new [digital] world we must extend familiar economic 
and political ideas to include the effects of these millions 
of [online] people learning from each other and 
influencing each other’s opinions,” suggesting that our 
understanding of people as individual decision makers 
must be balanced by understanding of how behaviors 
aggregate across these emerging social networks at 
various scales, from local to global. Indeed, as Adam 
Smith understood well, it is the nature of our social fabric 
that guides the “invisible hand” of the market, not simply 
competition alone.

A. The Problem With People
As Daniel Kahneman [4] routinely asks [5], “why do 
people regularly make poor decisions?” The answer, he 
asserts, lies in behavioral science, a field of study that, in 
part, believes human beings are unknowingly hamstrung 
by overconfidence, limited attention, cognitive biases 
and other psychological factors that inevitably result in 
errors of judgment.

Furthermore, Kahneman claims that much of human 
error is not attributable to a systematic cause, but rather 
to noise. “When people think about error, we tend to 
think about biases. But in fact, a lot of the errors that 
people make [is] simply noise, in the sense that it’s 
random, unpredictable, it cannot be explained. You look 
at large organizations that are supposed to be optimally 
rational. And the amount of folly in the way these places 
are run is actually fairly troubling.” Kahneman’s 
prescription is for society to temper human judgment 
with “disciplined thinking” through the augmented use of 
algorithms. When it comes to decision-making, 
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algorithms are superior to people. “Algorithms are noise-
free. People are not,” he states. “When you put some 
data in front of an algorithm, you will always get the 
same response at the other end.”

In a seminal paper published in 1979, “Prospect Theory: 
An Analysis of Decision under Risk,” Daniel Kahneman 
and Amos Tversky [6] argue that the ways in which 
alternatives are framed — not simply their relative value 
— heavily influence the decisions people make.

Framing alternatives can, for example, substantially 
change people’s preferences regarding risk. Given AI is 
now beginning to play a dominant role in technology and 
McKinsey has recently identified a growing consensus 
[5], that future productivity demands much more creative 
and critical thinking skills from people. Since many today 
often assume that these algorithms will soon be able to 
make important decisions autonomously and fear these 
algorithms will eventually overwhelm them.

This latter extrapolation, Kahneman and Tversky assert, 
is not only wrong, it’s dangerous. A more accurate and 
reasonable view is that today's advancing cognitive 
computing tools are expected to remain relatively 
focused within specific domains. As such, AI should be 
used to amplify, not replace, human intelligence and 
intuitive skills.

Kahneman goes on to observe [5] that psychologists 
have long realized that the mind is comprised of two 
distinct systems:

1) System 1 (Fast Autonomic Nervous System) 
operates automatically, intuitively and quickly 
with little or no effort and no sense of voluntary 
control. These automatic operations generate 
surprisingly complex patterns of ideas and 
behaviors and include innate skills humans 
share with other animals including perception, 
recognition, orientation and emotions. Many 
other activities can, in fact, be made automatic 
and fast through prolonged practice — in effect, 
programming our spinal cord rather that our 
cerebral cortex to react. 

2) System 2 (Slow Conscious Nervous System) 
allocates attention to the effortful mental 
activities that demand it, including complex 
reasoning and calculations, and is often 
associated with the subjective experiences of 
identity, choice and concentration. Equally, it 
is these purposeful mental activities that 
construct thoughts in an orderly series of 
steps. These highly diverse activities have 
one feature in common — they all require 
attention and are disrupted when attention is 
drawn away.

The impact on our choices due to various biases 
include loss aversion, over confidence in achieving 
goals, difficulties in predicting what will make us happy, 
and the challenges of properly framing risks. All of these 
can only be understood in terms of how these two 
mental systems shape our judgements and decisions.

B. The Problem With Machines
Among several increasingly popular AI techniques, deep 
learning, mimics the way interconnected layers of 
neurons fire in a brain as it learns to make sense of new 
information. An example of which, Google’s DeepMind 
Alpha Go program, taught itself through hours of 
automated practice to beat the former Go world 
champion Lee Sedol in March 2016 [7]. Through 
gradually honing an internal sense of strategy, Alpha 
Go’s ability to beat one of the world’s best Go players 
represents a true milestone in machine intelligence and 
AI.

Another aspect of machine intelligence was highlighted 
recently by UC Berkeley’s RiseLab [8], which claims that 
for all the vast amounts of information being collected, 
this “data is only as good as the [human] decisions its 
enables.” From this, they suggest we need machines to:

1) “make increasingly rapid complex decisions 
correctly in uncertain environments”;

2) “be robust and resilient by handling noisy and 
unforeseen inputs and failures”; and

3) “have the ability for the AI to trace and explain 
its own decision making”.

This highlights, for RiseLab, a concern with the way in 
which AI infrastructure has emerged to date, specifically, 
the latencies associated with the existing cloud-based 
statistical and neural learning techniques compared to 
decision speeds needed locally at the network edge. 
Given Daniel Kahneman’s similarly entitled book, 
RiseLab refers to this as “inferencing, fast and slow,” 
which focuses attention on the evolving role of AI from its 
deployment and performance expectations to achieving 
effective human augmentation.

From this, we expect to see a separation of AI-based 
cognitive functions into two distinct implementations of 
Fast and Slow AI. (see Figure-1a and Figure-1b)

II. ARCHITECTURE

C. What is AI?
All too often, the publicity surrounding AI today is 
woeful ly misunderstood and subject to many 
interpretations across a wide spectrum of fields. Without 
a clear definition of AI, the tendency is to simply offload 
menial, tedious tasks to a machine and refer to this 
automated handling of the task as “AI”. As a result, 
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individuals outside the field (and even some AI 
practitioners themselves) appear confused as to what AI 
actually is.

Historically, after several decades of research and 
development efforts, classical AI techniques were facing 
intractable issues (e.g. combinatorial explosion of 
modelling artifacts) when AI was confronted with real-
world planning problems. Rodney Brooks [11] began 
disrupting this established approach in the 1980s by 
innovating a “situated AI” that focused on building agents 
that behave effectively (simply) in their environment. 
From this Brooks argued [12][13] that “situated AI” 
required designing AI agents "from the bottom-up not 
top-down" by focusing on basic perceptual and motor 
skills required to survive.

This “situated AI” approach gives much lower priority to 
abstract reasoning and theorem proving about plans, in 
preference to developing basic behaviors to explore an 
environment, discover food, threats and sanctuaries 
while developing resources.

Ultimately, the question of what is AI does not have a 
simple answer. As the capabilities of AI have proven 
themselves practical for a wide variety of subject areas, 
the question of AI heavily relies of the requirements of 
the researchers involved.

In the case of this paper, AI is defined as the production 
of predictive policies at various scales derived from 
environmental evidence, which collectively drives the 
adaptation of subsumptive behaviors of individual agents 
in-situ. (see Figure-2a and Figure-2b)

III. AI IN DIGITAL GAMES

As software development within the video game industry 
has evolved over time, so too have various techniques 
employed by game developers to minimize the 
associated software development effort and costs. For 
instance, reusable game engines provide a significant 
reduction in cost for studios. Rather than constantly re-
developing the core components of a game (i.e. 2D/3D 
rendering engine, physics engine, network management, 
sound, animations, etc.) a reusable game engine 
provides developers with a more economic approach, 
via reusable core engine components.

A key factor in the development of modern digital games 
is the inclusion of non-player characters (referred to as 
NPCs or agents). These entities are strictly computer 
controller characters whose behaviors are executed as 
reactions to human player choices and surrounding 
environmental cues. When developing game agents, a 
significant amount of time is spent reimplementing NPC 
behaviors despite strong similarities shared with other 
completed game agents. As a result, a sizeable portion 

of software development cost can be attributed to the 
overall number of these discrete game agents. 

Christopher Dragert in his 2015 PhD thesis entitled 
“Model-Driven Development of AI for Digital Games” [15] 
suggests that a lack of a suitably generic AI 
representation that is both formalized and flexible has 
constrained the streamlining of the AI development 
process. A key aim of Dragert’s work is to utilize model-
driven development to improve the software engineering 
process of modern game AI. Dragert demonstrates that 
the creation of a reusable tool (an external core engine 
component) for AI development enables the formation of 
modular artificial intelligence and a new formalism of 
layered statecharts for the development of NPC AI 
behaviors.

D. Statechart Modeling
Statecharts were introduced in 1987 by David Harel, in 
his paper entitled “Statecharts: A Visual Formalism for 
Complex Systems” [16] as a means to visually model 
behaviors in reactive systems. The core component of 
statecharts is the concept of discrete states and their 
associated transitional connections. Statecharts take a 
sequence of discrete events as inputs that cause 
transitions to (timed) states, which in turn produces a 
sequence of discrete output events. While statecharts 
are similar to previous FSM development techniques, 
statecharts extend FSMs by providing improved 
encapsulation [17], in addition to supporting visual 
development and animated program execution.

E. Improvements to Model-Driven AI Development
Dragert demonstrates the modular capabilities of layered 
statechart-based AI in the form of “Scythe AI” [15], a tool 
designed to manage modular reuse of game AI. By 
supporting the creation and manipulation of AI 
interfaces, the visual engineering of new AI logic, and 
ensuring correctness through an error and warning 
system, “Scythe AI”, provides a complete workflow for 
reuse. However, while “Scythe AI” facilitates reuse 
through modular interfaces within layered statechart-
based AI, the tool could be further enhanced by 
providing support for dynamically changing AI behaviors 
at runtime.

Example: Within a combat simulation, an AI game 
coordinator releases a squad of agents. The objective of 
this squad is to engage and destroy a human opponent’s 
game character. Once engaged, the squad of AI is 
eliminated when running from cover to cover during 
sustained enemy fire.

Utilizing a Fast / Slow AI comprised of a multi-agent 
reinforcement learning system directed by a secondary 
policy coordinator analyzes the cost of the defeat. The AI 
coordinator establishes an event chain leading up to the 
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death of each squad agent, and determines an 
appropriate modification to the resulting behavior queue. 
Strictly using prebuilt behavior states, the policy 
coordinator may modify the agent behavior rewards and 
costs to include a higher reward value to the “crouch” 
action when running from cover to cover, and in turn a 
higher cost value to the “running while standing” 
behavior. 

Once the battle is complete (e.g., opponent agents are 
destroyed or all NPC agents are eliminated), the primary 
multi-agent system feeds the secondary policy 
coordinator with summary data regarding the 
performance of each individual agent, as well as the 
surrounding environmental conditions over time. The 
coordinator then iteratively re-evaluates the decisions 
over the timeline, providing further policy based 
suggestions for improvement.

In order to establish refined, dynamically changing AI 
behaviors at runtime, a subset of Machine Learning, 
known as Reinforcement Learning (RL), should be 
employed by the game’s agents at the network edge. As 
noted in “A brief introduction to reinforcement learning” 
by Kevin Murphy [18], “reinforcement learning is the 
problem of getting an agent to act in the world so as to 
maximize its rewards”. Rewards are typically numerical 
signals used to direct an RL agent in order execute an 
ideal behavior within a specific context, while maximizing 
its reward value. Furthermore, Reinforcement Learning 
enables goal-oriented learning based on a software 
agent’s interaction with its surrounding environment.

Lionhead Studio’s 2001 game “Black and White” is a 
particularly prominent example of early adoption of 
reinforcement learning in a digital game [19]. Players 
begin the game by selecting a creature based on a 
Belief-Desire-Intent (BDI) model [20]. As the game 
proceeds, the player can teach the creature how to 
perform various tasks (fighting,   eating, etc). Unlike the 
approach used in Q-Learning, Lionhead Studios 
leveraged a modification of the BDI framework to 
reinforce the creatures’ decision making process. 
Specifically, when a player evaluated a proposed action 
to be performed by an agent, a positive reinforcement 
could be applied through a ‘stroking’ response, while 
undesired actions could be dissuade through a ‘slapping’ 
response.

Implementation of RL algorithms vary. In a 1989 PhD 
thesis paper “Learning From Delayed Rewards”, 
Christopher Watkins [21] introduced a method of RL 
called Q-Learning. The distinctive feature of Q-Learning 
is its capacity to choose between immediate rewards 
and delayed rewards. At each step of time t, an agent 
observes its current state xt, then chooses and applies 

an action ut. As the process moves to state xt+1, the 
agent receives a reinforcement or reward signal r(xt, 
ut). The goal of this training is to find the sequential 
order of actions that maximizes the sum of the future 
reinforcements, thus leading to the shortest path from 
start to finish. 

The relation between states, actions and rewards are 
typically derived through some variation of the Bellman 
optimality equation (either through an optimal state-value 
or action-value function). Resolving these equations is 
typically done through the use of either dynamic 
programming methods, such as value or policy iteration, 
or through Monte Carlo based simulations. Dynamic 
programming based value or policy iteration require a 
complete and accurate model of the environment. 
Typically the surrounding environmental model is often 
unknown to a digital game agent, and therefore the 
agent must interact with its environment to obtain further 
information to help produce an optimal policy.

Common approaches to learning an optimal policy are 1) 
model-free or 2) model-based. In a model-free approach 
the agent learns a policy without the need to learn the 
model of the environment. The previously mentioned Q-
Learning is a well known, model-free approach based on 
a value iteration algorithm. The model-based approach 
revolves around an agent that learns a model of the 
environment, then uses that to determine an optimal 
policy.

The Dyna framework is a common model-based 
approach, which integrates RL and planning (policy 
coordination) into a single process operating alternately 
on the world and on a learned model of the world. The 
Dyna architecture has historically been used in 
combining RL and planning. Notably, Richard Sutton in 
1990 presented two approaches to Dyna, showcasing 
their use in dynamic environments [22]. Sutton’s primary 
example utilized dynamic programming’s policy iteration, 
while the other leveraged RL based Q-Learning. While 
Sutton's paper presented a number of limitations with 
Dyna (limited search controls, explicit knowledge of 
world state, and quality/resolution of state estimations), 
criticism of Q-Learning has been raised, referring to the 
process as often very slow, and in situations of high 
complexity, difficult to determine an optimal policy [16]. 
Implementation of state planners, in tandem with RL, 
provide the potential to address this optimization issue.

IV. CRITICISM OF LEARNING IN DIGITAL GAMES

RL provides the potential to greatly enhance behaviors 
found in a multi-agent system through refinement, 
although digital games leveraging learning have been 
frequently criticized. When outlining additional 
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architectural approaches to AI decision making, Dragert 
provides a proposal in support of AAA titles incorporating 
learning into their game AI [15]. 

Dragert explains that while historically, some games 
have attempted to adopt a learning AI, the nature of 
learning, in combination with the variation in possible 
play styles, could result in a game that is easy for some 
players, and impossible for others. Furthermore, his 
paper extends the critique to AI debugging, where 
Dragert states that leveraging a learning AI “complicates 
testing, since the behavior of the AI is an emergent 
property of the learning process itself”. The criticism of 
fluctuating ranges in difficulty, as well as complications in 
testing, is a side effect that Dragert noted, particularly 
with Lionhead Studio’s Black and White. 

This paper acknowledges the criticism of previously 
developed learning AI.  The criticism of fluctuating 
difficulty can be directly associated to AI that typically 
plays an opposing role against a human player. 
However, the inclusion of a complementary system, 
where an automated planner / reinforcement learner aids 
in the decision making process of the human player, 
could address the latter critique. This proposed system 
offers realtime, contextual objectives to an individual 
player, based on cohesive environmental feedback 
provided by the runtime multi-agent system.

V. DYNAMIC AGENT BEHAVIOR IMPLEMENTATION

An article by Ioannis Partalas, Dimitris Vrakas and 
Ioannis Vlahavas entitled “Reinforcement Learning and 
Automated Planning: A Survey” [23], notes that planners 
(or policy coordinators) combined with learners offer 
similar operational opportunities. By equipping an agent 
with a planner (coordinator) and a learner that cooperate 
either sequentially or in a concurrent way, improvements 
can be made progressively when guiding an agent to 
achieve a set of longer term goals (especially when 
situated in a dynamic environment). With this in mind, 
there are three possible approaches in merging both 
planning (policy coordinators) and RL to achieve 
layered-statechart AI:

1) Plan First then Learn  
In this method, planning (coordination) is first 
utilized to construct a fixed sequence of actions 
that may then be used to speed up the learning 
process. This procedure can be demonstrated 
as a tree, whereby the null node is the goal 
state, and all other nodes are behavior states. 
Furthermore, the actions executed by the RL 
agent are represented as connections between 
the discrete nodes. When an action is 
performed in a node, then the conditions of the 
parent node are achieved.

The three authors propose that the simplest 
means to implement a planning and learning 
merge is to pre-compile compound actions from 
simple ones, thereby generating hierarchies to 
be used by an RL agent, done either manually 
or automatically as a part of the planning 
process. Finally, the agent learns a policy for 
choosing optimal paths in the plan that was 
previously produced from the planner. This 
combination of planning and learning is further 
described in Malcolm Ryan and Mark Pendrith’s 
work on “Reinforcement Learning Teleo-
operators” in 1998 [24]. 

2) Learn First then Plan 
Unlike the previous approach, this method 
prioritizes an agent to learn first, then plan. 
During the first step an RL algorithm is used to 
estimate the value function for each problem 
state. A value function is defined as “the 
expected discounted return for executing action 
a in state s and thereafter following policy 
π” [21]. 
In the second phase, the agent planner 
produces an event hierarchy according to the 
traditional GOAP formulations. The produced 
event list consists of an explicit sequence of 
potential actions that require little to no 
environmental feedback when executed. 
Partalas et al state that the advantage of this 
approach is to improve the usability of the 
results. Specifically, RL relies on moment-to-
moment sensing, while the sequences of 
actions produced by planners are very useful in 
situations where continuous sensing is difficult 
or have the potential to be computationally 
intensive.

3) Fuse Learning and Planning Together  
Finally, Partalas et al [23] propose a third hybrid 
option as a merger between both learning and 
planning methodologies. Planners search a 
state space in order to construct a solution. By 
incorporating learning into the planning 
process, they are able to bias the search in 
directions that make it possible to create high 
quality, highly optimized plans.

VI. IMPLEMENTATION: FAST REINFORCEMENT LEARNING 
THROUGH SLOW POLICY CREATION

To test, validate and ultimately evolve the theory of 
“fast”, “slow” behavioural AI, we need to implement these 
agents within a constrained finite yet largely random 
game environment utilizing electro-mechanical actuators 
under programmatic control to effect outcomes while still 
allowing for both human input and remote behavioural 
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coordination. The gaming environment we elected to 
build as a test platform is a robotic FoosTable.

Specifically, this paper proposes a split solution, 
comprised of co-dependent “fast” and “slow” inferencing 
agents, including one set of up to two (2) “fast” agents 
executing on the FoosTable’s embed computer at the 
network edge, where each agent controls a set of four 
(4) electro-mechanical servo FoosMen actuators from 
eight (8) in total (1 x Goalie; 2 x defensemen; 5 x 
midfielders; 3 x forwards) that can effect left / right 
translation and 360° rotational high speed motions.

Each agent’s software effects the aggregate behaviours 
of a given FoosBall player in a match, as captured and 
synthesized from repeated live human play over time by 
a “behaviour coordination agent”. Each of a player’s 
numerous “behavioural fragments” (and associated 
triggering events) are aggregated within a “behavioural 
tree” by this “behavioural coordinating agent” at the end 
of each match. Within each “behavioural fragment” is a 
set of operational instructions used to drive.

These “fast” player agents, in turn, utilize Reinforcement 
Learning (RL) adaptation techniques within a “slow” 
behaviour coordination agent executing within the cloud.

This configuration has the potential to create more 
dynamic NPC actions in a MAS through the combination 
of a “fast” and “slow” learning, and planning system. In 
addition, this proposed configuration provides an 
opportunity for more sophisticated AI opponents to 
emerge from within the genres of digital as well as 
physical gaming.

The rules of the primary MAS system are as follows, and 
apply to all agents:

• All independent agents contain a suite of identical 
known behavior fragments (In the case of a 
physical FoosTable implementation, ball juggling 
behavior, offensive push shot behavior or 5-bar to 
3bar pass behavior, etc).

- These behavior states assigned to each 
agent constrain the range of possible 
executable actions the agent can perform.

- These scoped behavior ranges construct a 
behavior tree, whereby the MAS traverses 
the behavior tree with the objective of 
reaching the final end goal state (win or 
loss).

• Each agent within the primary system must act 
independently of one another. In the case of a 
physical game such as FoosBall, each rod 
containing a row of variable FoosMen represents 
a single agent.

• The paths connecting each state in the behavior 

tree contain a weighted value. These weighted 
links are the behavioral valence values upon 
which MAS decides future actions and records 
successful and unsuccessful traversal paths.

• Consistent with standard RL practices, the 
decision for an agent to act upon any given 
behavior state is directed by the weighted 
behavioral valence value linking each state in the 
behavior tree. Therefore, each agent must be 
provided with and directed by a reward goal.

• Each agent attempts to discover which traversal 
path yields the greatest reward return.

- Agents must learn, over discrete time steps, 
which combination of behavioral actions 
yields the highest current reward. This per-
agent discovery process is executed using 
event triggered scheduling within the agent’s 
logic.

Upon completion of the “fast” learning MAS, the 
secondary “slow” cloud based planning system takes 
over. In order for the secondary system to process the 
game data from the primary system, the following rules 
must be met:

• When a game is completed, the MAS must 
package recorded game metadata into a 
behavioral timeline.

- Game metadata contains all recorded game 
data, including but not limited to:

• Executed behavior trees 
containing exact state paths and 
the corresponding epoch time, 
scores etc.

• A behavioral timeline must then be validated by 
a consensus of nodes on the network. Upon 
validation, the behavioral timeline is transmitted 
to the cloud policy manager.

- Individual node validation is achieved 
through a successful replay of the 
behavioral timeline.

• Only upon a valid consensus of the network 
nodes, will the recorded behavioral timeline be 
uploaded to the cloud

Each independent agent found within the primary system 
acts using a suite of known behaviors in order to 
maximize this numerical reward signal. The reward 
signal directing the behavior selection is provided by the 
secondary policy planner coordinator. Directing the 
primary MAS is the secondary, cloud-based, policy 
coordinator. This coordinator evaluates the decision path 
contained in the provided behavioral fragment timeline.

The influx of each new game’s behavioural metadata, 
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when added to the behaviours already captured, in 
aggregate, by the existing behaviour tree, is then used to 
synthesize a new behavioural tree. By modifying the 
valence of each behavioural fragment, as well as the 
hierarchy or order of behavioural fragments in the 
behavior tree, the policy system is able to correct current 
behavior and synthesize future behavior responses. The 
modifications (referred to as policies) made to the 
original behavior tree are repackaged as a new behavior 
fragment and provided back to the MAS. Through the 
creation of policies generated by the coordinator, the 
secondary system is in turn, influencing the behaviors of 
the agents in the primary system. 

It is important to note that as the coordinator acts 
independently of the MAS, one can imagine these two 
mechanisms operating with a distinct “fast” and “slow” 
execution cycle. The “fast” execution process acts 
continuously in real time. The MAS determines which 
behavior states to act upon in order to yield a reward, 
while the policy coordinator, the “slow” execution 
process, operates on a need-to-update basis, providing 
refinement when needed. As agents from the primary 
“fast” system feed data to the secondary “slow” system, 
the policy coordinator updates only when conditions 
dictate.  In other words, if a critical mean threshold for all 
agents is exceeded, such as hunger or health, or if an 
environmental condition is triggered (i.e., an area is 
being attacked by an enemy population), then an 
offensive behavior is recommended. 

F. FoosTable Multi-Agent System Implementation
Execution of a network edge MAS comprised of 
stochastic agents leveraging reinforcement learning, 
requires a powerful embedded computational device 
dedicated to managing the regarding core components. 
Nvidia’s Jetson TX2 module provides the foundation for 
accurate environmental inferencing, as well as the 
platform from which the MAS operates.

Operating as the primary layer on top of the TX2 board, 
The Robot Operating System (ROS) offers a message 
p a s s i n g i n t e r f a c e p r o v i d i n g i n t e r - p r o c e s s 
communication. As the MAS iterates through the 
previously described operational loop, traversing through 
a behavioral tree and executing corresponding behavior 
states. The MAS passes a message set to the servo 
controller, which in turn drives the servo controls 
operating the physical FoosAgents, as outlined by the 
MAS’s current behavior state.

In addition to providing standardized message definitions 
and libraries, ROS’s utilization of an anonymous, 
asynchronous message passing service readily allows 
for data to be captured and replayed. Additionally, the 
ROS acts as the foundational services layer to provide 

the basic secure Internet protocol stack, enabling a 
baseline implementation of a ledger to record and 
convey fine-grained per-game data back to the policy 
coordination system for ongoing cloud based behavior 
analysis. 

In order to properly direct the MAS layer, an object 
tracking system is needed to maintain a 3D map of the 
current location of the FoosBall on the FoosTable’s 
playing surface in real time. In turn, this object tracking 
system must be capable of tracking its target object 
despite visual occlusion. Reliant on external cameras 
looking “inward” towards the constrained playing 
surface, the OpenCV SLAM software module used to 
gather information regarding its surroundings.

A key component of the object tracking system is the 
FoosTable’s OpenCV based Synchronous Localization 
And Mapping system (SLAM) software. Intel’s 3D 
RealSense infrared cameras are used to capture the 
position of the FoosBall with this location and trajectory 
data being fed into a Kalman filter to project ball 
trajectory based on recorded ball position and velocity. 
[REFERENCE Joan Sol`a paper] Operation procedure 
of the SLAM system consists of three core tasks 
executed iteratively through a fixed time step.

1. A motion model is generated upon movement of 
the agent. The agent A moves according to a 
control signal u and a perturbation n and updates 
its state, A ← f(A, u, n). The motion model acts 
as a mathematical model to reduce uncertainty 
on the robot’s localization. 

2. An inverse observation model is used to record 
and map key features (known as landmarks) 
throughout the play space. The inverse 
observation model, a mathematical model, is used 
as an automated solution to determine the position 
of landmarks in the scene. The position of these 
landmarks is provided by the data obtained by the 
exteroceptive and proprioceptive sensors and can 
be computed as Li = g(A, S, yi), where Li is an 
observed landmark mapped by a sensor S.

3. As the agent A travels throughout the play space, 
prior mapped landmarks Li are observed by means 
of a sensor S, where yi = h(A, S, Li). A direct 
observation model is used in updating both the 
localization of the agent, as well as the localization 
of all landmarks, ultimately producing an updated 
measurement of yi.

Each of these three operations, in combination with an 
estimator engine, can be used to build an automated 
solution to the SLAM system. In the case of FoosBall 
implementation, a Kalman filter is used as the estimator 
engine.
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G. FoosTable Cloud-based Policy System 
Implementation

As the number of FoosTables grows, so too will the 
corresponding behavioral fragments generated by each 
game played. These discrete fragments contain specific 
player motion / controller  / ball-state sequences 
captured as metadata before being used in the 
behavioral fragment refinement process by the central 
cloud based policy manager. These refined behavioral 
fragments provided by the policy manager are used in 
turn to optimize the corresponding AI’s player persona. 
Not only will a secure database need to be utilized in this 
effort to record all games played, but so too will a system 
be required which enables secure transmission of the 
corresponding data between the reinforcement based 
“fast” AI found on each FoosTable and a central cloud 
based “slow” policy manager.

Deployment of a Blockchain system is used to fulfill 
these requirements. The Blockchain operates as a 
private game ledger, not only functioning as a scalable 
database but providing a means to transmit, and 
consequently, validate the block of data sent. In the case 
of the fast AI based FoosBall table, each table acts as a 
node in a larger network. Once a game is completed, 
that table transmits the game metadata through the 
network connect ing a l l FoosTables . Once a 
supermajority of nodes agrees on the validity of the 
game played, the game is captured and the 
corresponding metadata transmitted to the cloud. 

Game validation is a critical component when recording 
games played. As a private ledger, the identity of all 
parties is known to all nodes on the network. This in fact 
adds a layer of security as, in the case of a rouge/ 
malicious actor, attempting to tamper with the table can 
be pursued and removed from the network. 

Once the cloud based policy manager has determined 
the next course of action, the Blockchain is used to 
securely pass the refined behavioral fragment data back 
down to the originating foostable’s MAS.

VII. CONCLUSIONS

Behavioral Valence represents a new component 
enabling AI augmented Human Interaction through 
sophisticated policy coordination in a wide variety of 
game or digital contexts. For instance, players operating 
within a real time strategy game are “influenced” by an 
AI Coordinator to focus on: farming policy, defensive 
posture, expanding the housing stock, expanding the 
transportation network, etc. Specifically, a system of 
human driven players operating at the network edge are 
augmented by a cloud-based policy coordinator 
(planner), who evaluates and responds to situational 
metadata provided by the multi-agents.

Future work regarding the implementation of a policy 
planner is needed. For example, the question arrises 
whether a planner must be based on RL, or if other 
variations of planning algorithms are more appropriate. 
Future experimental work is also needed to extend and 
refine the realtime FSM implementation at the network 
edge with synchronized metadata and reward 
coordination.
Implementing agent behavior through fast learning, 
augmented by slow policy coordination, offers developers the 
ability to refine the performance of more traditional decision-
making mechanisms. Principally, this is achieved through 
individual agents acting through stochastic Reinforcement 
Learning techniques, coupled with a coordinator generating 
near-term policy goals to also influence these per-agent 
behaviors. In turn, an MAS sends situational feedback data to 
the coordinator in order to inform the next epoch’s policy 
choices. While individual agents remain driven by a 
statechart / subsumption-based architecture, the addition of 
rewards driven policy directives further enhances the 
behavioral outcomes.  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Figure-1a: Berkeley’s RiseLab current AI worldview for both 
Machine & Reinforcement Learning algorithms which are 
located dominantly in the cloud

Figure-1b: Berkeley’s RiseLab foresees AI infrastructure becoming 
more local to the network edge, in part, to address an 
order magnitude increase needed in its performance

Figure-2a: Example of per-agent Brooksian subsumption layering in 
the game environment Valence [14] with Activator / Inhibitor inter-

layer signalling
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Figure-2b: Screen captures from the game environment Valence [14] showing a Procedurally Generated Agent (left) and Reactive AI Agents 
(right) in-situ
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