
September 1, 2016 of 1 11

Abstract — Recently, the use of learning technologies
within digital game logic has been questioned as
presenting an unnecessary level of control complexity,
coupled with issues in reliably testing AI-based behavior
and biases that are an emergent property of a learning
process. These criticisms resonate in the context of game-
side augmentation. Rather than strictly limiting a learning
AI to an opposing, antagonist role, this paper proposes a
complementary scheme wherein an automated planner /
reinforcement learner aids in the decision-making process
of the human player. This proposed system offers real-
time, contextual objectives to an individual player, based
on cohesive feedback provided by a runtime multi-agent
system coordinating players towards common goals.
This paper outlines, investigates and proposes a series of
improvements associated with decision making processes
when faced with uncertainty in high speed reactive Finite
State Machine (FSM) architectures, allowing for greater
refinement through adapt ive state transit ions.
Furthermore, this paper investigates recent proposals in
Artificial Intelligence (AI) based decision making
technology emerging from UC Berkeley’s RiseLab that
combines “slow” cloud-based behavior refinement
techniques with “fast” reactive techniques operating at a
network edge.
FSMs present issues for programmers principally due to
limited standardization, testing infrastructure and
adaptability. This paper examines current implementations
of finite state behaviors specifically in the context of AI-
applied digital games and proposes player augmentation
improvements through the use of “fast” reinforcement
learning coupled with “slow” policy planning.
Ultimately, AI augmented human interaction techniques
have a broader scope beyond digital gaming and are
emerging as a key capability for a wide variety of AI
deployments in many fields.

Valence: ˈvāləns
• relating to or denoting electrons involved in or

available for chemical bond formation
• the linguistic elements that make a discourse

semantically coherent including the number of
grammatical elements with which a particular
word, especially a verb, combine in a sentence

• the emotional and social bonds among members
of a community, organization and society

Index Terms — machine learning, reinforcement learning,
artificial intelligence, finite state machines, modeling, serious
games, Monte Carlo simulation

I. INTRODUCTION

Alex Pentland [1] in his 2014 book “Social Physics —
How Social Networks can Make Us Smarter” [2] sees
social cohesion as the tendency to create structures that
are cooperative, productive and creative. Klaus Jaffe in
his 2006 paper “Simulations Show that Shame Drives
Social Cohesion” [3] offers that “as far back as Plato
(427-347 BCE) we have recognized that feelings of
shame are fundamental for the maintenance of social
cohesion,” thereby suggesting there are more nuanced
aspects to maintaining cohesive behaviors.

Pentland goes on to point out that “to understand our
new [digital] world we must extend familiar economic
and political ideas to include the effects of these millions
of [online] people learning from each other and
influencing each other’s opinions,” suggesting that our
understanding of people as individual decision makers
must be balanced by understanding of how behaviors
aggregate across these emerging social networks at
various scales, from local to global. Indeed, as Adam
Smith understood well, it is the nature of our social fabric
that guides the “invisible hand” of the market, not simply
competition alone.

A. The Problem With People
As Daniel Kahneman [4] routinely asks [5], “why do
people regularly make poor decisions?” The answer, he
asserts, lies in behavioral science, a field of study that, in
part, believes human beings are unknowingly hamstrung
by overconfidence, limited attention, cognitive biases
and other psychological factors that inevitably result in
errors of judgment.

Furthermore, Kahneman claims that much of human
error is not attributable to a systematic cause, but rather
to noise. “When people think about error, we tend to
think about biases. But in fact, a lot of the errors that
people make [is] simply noise, in the sense that it’s
random, unpredictable, it cannot be explained. You look
at large organizations that are supposed to be optimally
rational. And the amount of folly in the way these places
are run is actually fairly troubling.” Kahneman’s
prescription is for society to temper human judgment
with “disciplined thinking” through the augmented use of
algorithms. When it comes to decision-making,

Behavioral Valence - Modeling Cohesive
Actions to Augment Human Interaction

September 1, 2016 of 2 11

algorithms are superior to people. “Algorithms are noise-
free. People are not,” he states. “When you put some
data in front of an algorithm, you will always get the
same response at the other end.”

In a seminal paper published in 1979, “Prospect Theory:
An Analysis of Decision under Risk,” Daniel Kahneman
and Amos Tversky [6] argue that the ways in which
alternatives are framed — not simply their relative value
— heavily influence the decisions people make.

Framing alternatives can, for example, substantially
change people’s preferences regarding risk. Given AI is
now beginning to play a dominant role in technology and
McKinsey has recently identified a growing consensus
[5], that future productivity demands much more creative
and critical thinking skills from people. Since many today
often assume that these algorithms will soon be able to
make important decisions autonomously and fear these
algorithms will eventually overwhelm them.

This latter extrapolation, Kahneman and Tversky assert,
is not only wrong, it’s dangerous. A more accurate and
reasonable view is that today's advancing cognitive
computing tools are expected to remain relatively
focused within specific domains. As such, AI should be
used to amplify, not replace, human intelligence and
intuitive skills.

Kahneman goes on to observe [5] that psychologists
have long realized that the mind is comprised of two
distinct systems:

1) System 1 (Fast Autonomic Nervous System)
operates automatically, intuitively and quickly
with little or no effort and no sense of voluntary
control. These automatic operations generate
surprisingly complex patterns of ideas and
behaviors and include innate skills humans
share with other animals including perception,
recognition, orientation and emotions. Many
other activities can, in fact, be made automatic
and fast through prolonged practice — in effect,
programming our spinal cord rather that our
cerebral cortex to react.

2) System 2 (Slow Conscious Nervous System)
allocates attention to the effortful mental
activities that demand it, including complex
reasoning and calculations, and is often
associated with the subjective experiences of
identity, choice and concentration. Equally, it
is these purposeful mental activities that
construct thoughts in an orderly series of
steps. These highly diverse activities have
one feature in common — they all require
attention and are disrupted when attention is
drawn away.

The impact on our choices due to various biases
include loss aversion, over confidence in achieving
goals, difficulties in predicting what will make us happy,
and the challenges of properly framing risks. All of these
can only be understood in terms of how these two
mental systems shape our judgements and decisions.

B. The Problem With Machines
Among several increasingly popular AI techniques, deep
learning, mimics the way interconnected layers of
neurons fire in a brain as it learns to make sense of new
information. An example of which, Google’s DeepMind
Alpha Go program, taught itself through hours of
automated practice to beat the former Go world
champion Lee Sedol in March 2016 [7]. Through
gradually honing an internal sense of strategy, Alpha
Go’s ability to beat one of the world’s best Go players
represents a true milestone in machine intelligence and
AI.

Another aspect of machine intelligence was highlighted
recently by UC Berkeley’s RiseLab [8], which claims that
for all the vast amounts of information being collected,
this “data is only as good as the [human] decisions its
enables.” From this, they suggest we need machines to:

1) “make increasingly rapid complex decisions
correctly in uncertain environments”;

2) “be robust and resilient by handling noisy and
unforeseen inputs and failures”; and

3) “have the ability for the AI to trace and explain
its own decision making”.

This highlights, for RiseLab, a concern with the way in
which AI infrastructure has emerged to date, specifically,
the latencies associated with the existing cloud-based
statistical and neural learning techniques compared to
decision speeds needed locally at the network edge.
Given Daniel Kahneman’s similarly entitled book,
RiseLab refers to this as “inferencing, fast and slow,”
which focuses attention on the evolving role of AI from its
deployment and performance expectations to achieving
effective human augmentation.

From this, we expect to see a separation of AI-based
cognitive functions into two distinct implementations of
Fast and Slow AI. (see Figure-1a and Figure-1b)

II. ARCHITECTURE

C. What is AI?
All too often, the publicity surrounding AI today is
woeful ly misunderstood and subject to many
interpretations across a wide spectrum of fields. Without
a clear definition of AI, the tendency is to simply offload
menial, tedious tasks to a machine and refer to this
automated handling of the task as “AI”. As a result,

September 1, 2016 of 3 11

individuals outside the field (and even some AI
practitioners themselves) appear confused as to what AI
actually is.

Historically, after several decades of research and
development efforts, classical AI techniques were facing
intractable issues (e.g. combinatorial explosion of
modelling artifacts) when AI was confronted with real-
world planning problems. Rodney Brooks [11] began
disrupting this established approach in the 1980s by
innovating a “situated AI” that focused on building agents
that behave effectively (simply) in their environment.
From this Brooks argued [12][13] that “situated AI”
required designing AI agents "from the bottom-up not
top-down" by focusing on basic perceptual and motor
skills required to survive.

This “situated AI” approach gives much lower priority to
abstract reasoning and theorem proving about plans, in
preference to developing basic behaviors to explore an
environment, discover food, threats and sanctuaries
while developing resources.

Ultimately, the question of what is AI does not have a
simple answer. As the capabilities of AI have proven
themselves practical for a wide variety of subject areas,
the question of AI heavily relies of the requirements of
the researchers involved.

In the case of this paper, AI is defined as the production
of predictive policies at various scales derived from
environmental evidence, which collectively drives the
adaptation of subsumptive behaviors of individual agents
in-situ. (see Figure-2a and Figure-2b)

III. AI IN DIGITAL GAMES

As software development within the video game industry
has evolved over time, so too have various techniques
employed by game developers to minimize the
associated software development effort and costs. For
instance, reusable game engines provide a significant
reduction in cost for studios. Rather than constantly re-
developing the core components of a game (i.e. 2D/3D
rendering engine, physics engine, network management,
sound, animations, etc.) a reusable game engine
provides developers with a more economic approach,
via reusable core engine components.

A key factor in the development of modern digital games
is the inclusion of non-player characters (referred to as
NPCs or agents). These entities are strictly computer
controller characters whose behaviors are executed as
reactions to human player choices and surrounding
environmental cues. When developing game agents, a
significant amount of time is spent reimplementing NPC
behaviors despite strong similarities shared with other
completed game agents. As a result, a sizeable portion

of software development cost can be attributed to the
overall number of these discrete game agents.

Christopher Dragert in his 2015 PhD thesis entitled
“Model-Driven Development of AI for Digital Games” [15]
suggests that a lack of a suitably generic AI
representation that is both formalized and flexible has
constrained the streamlining of the AI development
process. A key aim of Dragert’s work is to utilize model-
driven development to improve the software engineering
process of modern game AI. Dragert demonstrates that
the creation of a reusable tool (an external core engine
component) for AI development enables the formation of
modular artificial intelligence and a new formalism of
layered statecharts for the development of NPC AI
behaviors.

D. Statechart Modeling
Statecharts were introduced in 1987 by David Harel, in
his paper entitled “Statecharts: A Visual Formalism for
Complex Systems” [16] as a means to visually model
behaviors in reactive systems. The core component of
statecharts is the concept of discrete states and their
associated transitional connections. Statecharts take a
sequence of discrete events as inputs that cause
transitions to (timed) states, which in turn produces a
sequence of discrete output events. While statecharts
are similar to previous FSM development techniques,
statecharts extend FSMs by providing improved
encapsulation [17], in addition to supporting visual
development and animated program execution.

E. Improvements to Model-Driven AI Development
Dragert demonstrates the modular capabilities of layered
statechart-based AI in the form of “Scythe AI” [15], a tool
designed to manage modular reuse of game AI. By
supporting the creation and manipulation of AI
interfaces, the visual engineering of new AI logic, and
ensuring correctness through an error and warning
system, “Scythe AI”, provides a complete workflow for
reuse. However, while “Scythe AI” facilitates reuse
through modular interfaces within layered statechart-
based AI, the tool could be further enhanced by
providing support for dynamically changing AI behaviors
at runtime.

Example: Within a combat simulation, an AI game
coordinator releases a squad of agents. The objective of
this squad is to engage and destroy a human opponent’s
game character. Once engaged, the squad of AI is
eliminated when running from cover to cover during
sustained enemy fire.

Utilizing a Fast / Slow AI comprised of a multi-agent
reinforcement learning system directed by a secondary
policy coordinator analyzes the cost of the defeat. The AI
coordinator establishes an event chain leading up to the

September 1, 2016 of 4 11

death of each squad agent, and determines an
appropriate modification to the resulting behavior queue.
Strictly using prebuilt behavior states, the policy
coordinator may modify the agent behavior rewards and
costs to include a higher reward value to the “crouch”
action when running from cover to cover, and in turn a
higher cost value to the “running while standing”
behavior.

Once the battle is complete (e.g., opponent agents are
destroyed or all NPC agents are eliminated), the primary
multi-agent system feeds the secondary policy
coordinator with summary data regarding the
performance of each individual agent, as well as the
surrounding environmental conditions over time. The
coordinator then iteratively re-evaluates the decisions
over the timeline, providing further policy based
suggestions for improvement.

In order to establish refined, dynamically changing AI
behaviors at runtime, a subset of Machine Learning,
known as Reinforcement Learning (RL), should be
employed by the game’s agents at the network edge. As
noted in “A brief introduction to reinforcement learning”
by Kevin Murphy [18], “reinforcement learning is the
problem of getting an agent to act in the world so as to
maximize its rewards”. Rewards are typically numerical
signals used to direct an RL agent in order execute an
ideal behavior within a specific context, while maximizing
its reward value. Furthermore, Reinforcement Learning
enables goal-oriented learning based on a software
agent’s interaction with its surrounding environment.

Lionhead Studio’s 2001 game “Black and White” is a
particularly prominent example of early adoption of
reinforcement learning in a digital game [19]. Players
begin the game by selecting a creature based on a
Belief-Desire-Intent (BDI) model [20]. As the game
proceeds, the player can teach the creature how to
perform various tasks (fighting, eating, etc). Unlike the
approach used in Q-Learning, Lionhead Studios
leveraged a modification of the BDI framework to
reinforce the creatures’ decision making process.
Specifically, when a player evaluated a proposed action
to be performed by an agent, a positive reinforcement
could be applied through a ‘stroking’ response, while
undesired actions could be dissuade through a ‘slapping’
response.

Implementation of RL algorithms vary. In a 1989 PhD
thesis paper “Learning From Delayed Rewards”,
Christopher Watkins [21] introduced a method of RL
called Q-Learning. The distinctive feature of Q-Learning
is its capacity to choose between immediate rewards
and delayed rewards. At each step of time t, an agent
observes its current state xt, then chooses and applies

an action ut. As the process moves to state xt+1, the
agent receives a reinforcement or reward signal r(xt,
ut). The goal of this training is to find the sequential
order of actions that maximizes the sum of the future
reinforcements, thus leading to the shortest path from
start to finish.

The relation between states, actions and rewards are
typically derived through some variation of the Bellman
optimality equation (either through an optimal state-value
or action-value function). Resolving these equations is
typically done through the use of either dynamic
programming methods, such as value or policy iteration,
or through Monte Carlo based simulations. Dynamic
programming based value or policy iteration require a
complete and accurate model of the environment.
Typically the surrounding environmental model is often
unknown to a digital game agent, and therefore the
agent must interact with its environment to obtain further
information to help produce an optimal policy.

Common approaches to learning an optimal policy are 1)
model-free or 2) model-based. In a model-free approach
the agent learns a policy without the need to learn the
model of the environment. The previously mentioned Q-
Learning is a well known, model-free approach based on
a value iteration algorithm. The model-based approach
revolves around an agent that learns a model of the
environment, then uses that to determine an optimal
policy.

The Dyna framework is a common model-based
approach, which integrates RL and planning (policy
coordination) into a single process operating alternately
on the world and on a learned model of the world. The
Dyna architecture has historically been used in
combining RL and planning. Notably, Richard Sutton in
1990 presented two approaches to Dyna, showcasing
their use in dynamic environments [22]. Sutton’s primary
example utilized dynamic programming’s policy iteration,
while the other leveraged RL based Q-Learning. While
Sutton's paper presented a number of limitations with
Dyna (limited search controls, explicit knowledge of
world state, and quality/resolution of state estimations),
criticism of Q-Learning has been raised, referring to the
process as often very slow, and in situations of high
complexity, difficult to determine an optimal policy [16].
Implementation of state planners, in tandem with RL,
provide the potential to address this optimization issue.

IV. CRITICISM OF LEARNING IN DIGITAL GAMES

RL provides the potential to greatly enhance behaviors
found in a multi-agent system through refinement,
although digital games leveraging learning have been
frequently criticized. When outlining additional

September 1, 2016 of 5 11

architectural approaches to AI decision making, Dragert
provides a proposal in support of AAA titles incorporating
learning into their game AI [15].

Dragert explains that while historically, some games
have attempted to adopt a learning AI, the nature of
learning, in combination with the variation in possible
play styles, could result in a game that is easy for some
players, and impossible for others. Furthermore, his
paper extends the critique to AI debugging, where
Dragert states that leveraging a learning AI “complicates
testing, since the behavior of the AI is an emergent
property of the learning process itself”. The criticism of
fluctuating ranges in difficulty, as well as complications in
testing, is a side effect that Dragert noted, particularly
with Lionhead Studio’s Black and White.

This paper acknowledges the criticism of previously
developed learning AI. The criticism of fluctuating
difficulty can be directly associated to AI that typically
plays an opposing role against a human player.
However, the inclusion of a complementary system,
where an automated planner / reinforcement learner aids
in the decision making process of the human player,
could address the latter critique. This proposed system
offers realtime, contextual objectives to an individual
player, based on cohesive environmental feedback
provided by the runtime multi-agent system.

V. DYNAMIC AGENT BEHAVIOR IMPLEMENTATION

An article by Ioannis Partalas, Dimitris Vrakas and
Ioannis Vlahavas entitled “Reinforcement Learning and
Automated Planning: A Survey” [23], notes that planners
(or policy coordinators) combined with learners offer
similar operational opportunities. By equipping an agent
with a planner (coordinator) and a learner that cooperate
either sequentially or in a concurrent way, improvements
can be made progressively when guiding an agent to
achieve a set of longer term goals (especially when
situated in a dynamic environment). With this in mind,
there are three possible approaches in merging both
planning (policy coordinators) and RL to achieve
layered-statechart AI:

1) Plan First then Learn  
In this method, planning (coordination) is first
utilized to construct a fixed sequence of actions
that may then be used to speed up the learning
process. This procedure can be demonstrated
as a tree, whereby the null node is the goal
state, and all other nodes are behavior states.
Furthermore, the actions executed by the RL
agent are represented as connections between
the discrete nodes. When an action is
performed in a node, then the conditions of the
parent node are achieved.

The three authors propose that the simplest
means to implement a planning and learning
merge is to pre-compile compound actions from
simple ones, thereby generating hierarchies to
be used by an RL agent, done either manually
or automatically as a part of the planning
process. Finally, the agent learns a policy for
choosing optimal paths in the plan that was
previously produced from the planner. This
combination of planning and learning is further
described in Malcolm Ryan and Mark Pendrith’s
work on “Reinforcement Learning Teleo-
operators” in 1998 [24].

2) Learn First then Plan 
Unlike the previous approach, this method
prioritizes an agent to learn first, then plan.
During the first step an RL algorithm is used to
estimate the value function for each problem
state. A value function is defined as “the
expected discounted return for executing action
a in state s and thereafter following policy
π” [21].
In the second phase, the agent planner
produces an event hierarchy according to the
traditional GOAP formulations. The produced
event list consists of an explicit sequence of
potential actions that require little to no
environmental feedback when executed.
Partalas et al state that the advantage of this
approach is to improve the usability of the
results. Specifically, RL relies on moment-to-
moment sensing, while the sequences of
actions produced by planners are very useful in
situations where continuous sensing is difficult
or have the potential to be computationally
intensive.

3) Fuse Learning and Planning Together  
Finally, Partalas et al [23] propose a third hybrid
option as a merger between both learning and
planning methodologies. Planners search a
state space in order to construct a solution. By
incorporating learning into the planning
process, they are able to bias the search in
directions that make it possible to create high
quality, highly optimized plans.

VI. IMPLEMENTATION: FAST REINFORCEMENT LEARNING
THROUGH SLOW POLICY CREATION

To test, validate and ultimately evolve the theory of
“fast”, “slow” behavioural AI, we need to implement these
agents within a constrained finite yet largely random
game environment utilizing electro-mechanical actuators
under programmatic control to effect outcomes while still
allowing for both human input and remote behavioural

September 1, 2016 of 6 11

coordination. The gaming environment we elected to
build as a test platform is a robotic FoosTable.

Specifically, this paper proposes a split solution,
comprised of co-dependent “fast” and “slow” inferencing
agents, including one set of up to two (2) “fast” agents
executing on the FoosTable’s embed computer at the
network edge, where each agent controls a set of four
(4) electro-mechanical servo FoosMen actuators from
eight (8) in total (1 x Goalie; 2 x defensemen; 5 x
midfielders; 3 x forwards) that can effect left / right
translation and 360° rotational high speed motions.

Each agent’s software effects the aggregate behaviours
of a given FoosBall player in a match, as captured and
synthesized from repeated live human play over time by
a “behaviour coordination agent”. Each of a player’s
numerous “behavioural fragments” (and associated
triggering events) are aggregated within a “behavioural
tree” by this “behavioural coordinating agent” at the end
of each match. Within each “behavioural fragment” is a
set of operational instructions used to drive.

These “fast” player agents, in turn, utilize Reinforcement
Learning (RL) adaptation techniques within a “slow”
behaviour coordination agent executing within the cloud.

This configuration has the potential to create more
dynamic NPC actions in a MAS through the combination
of a “fast” and “slow” learning, and planning system. In
addition, this proposed configuration provides an
opportunity for more sophisticated AI opponents to
emerge from within the genres of digital as well as
physical gaming.

The rules of the primary MAS system are as follows, and
apply to all agents:

• All independent agents contain a suite of identical
known behavior fragments (In the case of a
physical FoosTable implementation, ball juggling
behavior, offensive push shot behavior or 5-bar to
3bar pass behavior, etc).

- These behavior states assigned to each
agent constrain the range of possible
executable actions the agent can perform.

- These scoped behavior ranges construct a
behavior tree, whereby the MAS traverses
the behavior tree with the objective of
reaching the final end goal state (win or
loss).

• Each agent within the primary system must act
independently of one another. In the case of a
physical game such as FoosBall, each rod
containing a row of variable FoosMen represents
a single agent.

• The paths connecting each state in the behavior

tree contain a weighted value. These weighted
links are the behavioral valence values upon
which MAS decides future actions and records
successful and unsuccessful traversal paths.

• Consistent with standard RL practices, the
decision for an agent to act upon any given
behavior state is directed by the weighted
behavioral valence value linking each state in the
behavior tree. Therefore, each agent must be
provided with and directed by a reward goal.

• Each agent attempts to discover which traversal
path yields the greatest reward return.

- Agents must learn, over discrete time steps,
which combination of behavioral actions
yields the highest current reward. This per-
agent discovery process is executed using
event triggered scheduling within the agent’s
logic.

Upon completion of the “fast” learning MAS, the
secondary “slow” cloud based planning system takes
over. In order for the secondary system to process the
game data from the primary system, the following rules
must be met:

• When a game is completed, the MAS must
package recorded game metadata into a
behavioral timeline.

- Game metadata contains all recorded game
data, including but not limited to:

• Executed behavior trees
containing exact state paths and
the corresponding epoch time,
scores etc.

• A behavioral timeline must then be validated by
a consensus of nodes on the network. Upon
validation, the behavioral timeline is transmitted
to the cloud policy manager.

- Individual node validation is achieved
through a successful replay of the
behavioral timeline.

• Only upon a valid consensus of the network
nodes, will the recorded behavioral timeline be
uploaded to the cloud

Each independent agent found within the primary system
acts using a suite of known behaviors in order to
maximize this numerical reward signal. The reward
signal directing the behavior selection is provided by the
secondary policy planner coordinator. Directing the
primary MAS is the secondary, cloud-based, policy
coordinator. This coordinator evaluates the decision path
contained in the provided behavioral fragment timeline.

The influx of each new game’s behavioural metadata,

September 1, 2016 of 7 11

when added to the behaviours already captured, in
aggregate, by the existing behaviour tree, is then used to
synthesize a new behavioural tree. By modifying the
valence of each behavioural fragment, as well as the
hierarchy or order of behavioural fragments in the
behavior tree, the policy system is able to correct current
behavior and synthesize future behavior responses. The
modifications (referred to as policies) made to the
original behavior tree are repackaged as a new behavior
fragment and provided back to the MAS. Through the
creation of policies generated by the coordinator, the
secondary system is in turn, influencing the behaviors of
the agents in the primary system.

It is important to note that as the coordinator acts
independently of the MAS, one can imagine these two
mechanisms operating with a distinct “fast” and “slow”
execution cycle. The “fast” execution process acts
continuously in real time. The MAS determines which
behavior states to act upon in order to yield a reward,
while the policy coordinator, the “slow” execution
process, operates on a need-to-update basis, providing
refinement when needed. As agents from the primary
“fast” system feed data to the secondary “slow” system,
the policy coordinator updates only when conditions
dictate. In other words, if a critical mean threshold for all
agents is exceeded, such as hunger or health, or if an
environmental condition is triggered (i.e., an area is
being attacked by an enemy population), then an
offensive behavior is recommended.

F. FoosTable Multi-Agent System Implementation
Execution of a network edge MAS comprised of
stochastic agents leveraging reinforcement learning,
requires a powerful embedded computational device
dedicated to managing the regarding core components.
Nvidia’s Jetson TX2 module provides the foundation for
accurate environmental inferencing, as well as the
platform from which the MAS operates.

Operating as the primary layer on top of the TX2 board,
The Robot Operating System (ROS) offers a message
p a s s i n g i n t e r f a c e p r o v i d i n g i n t e r - p r o c e s s
communication. As the MAS iterates through the
previously described operational loop, traversing through
a behavioral tree and executing corresponding behavior
states. The MAS passes a message set to the servo
controller, which in turn drives the servo controls
operating the physical FoosAgents, as outlined by the
MAS’s current behavior state.

In addition to providing standardized message definitions
and libraries, ROS’s utilization of an anonymous,
asynchronous message passing service readily allows
for data to be captured and replayed. Additionally, the
ROS acts as the foundational services layer to provide

the basic secure Internet protocol stack, enabling a
baseline implementation of a ledger to record and
convey fine-grained per-game data back to the policy
coordination system for ongoing cloud based behavior
analysis.

In order to properly direct the MAS layer, an object
tracking system is needed to maintain a 3D map of the
current location of the FoosBall on the FoosTable’s
playing surface in real time. In turn, this object tracking
system must be capable of tracking its target object
despite visual occlusion. Reliant on external cameras
looking “inward” towards the constrained playing
surface, the OpenCV SLAM software module used to
gather information regarding its surroundings.

A key component of the object tracking system is the
FoosTable’s OpenCV based Synchronous Localization
And Mapping system (SLAM) software. Intel’s 3D
RealSense infrared cameras are used to capture the
position of the FoosBall with this location and trajectory
data being fed into a Kalman filter to project ball
trajectory based on recorded ball position and velocity.
[REFERENCE Joan Sol`a paper] Operation procedure
of the SLAM system consists of three core tasks
executed iteratively through a fixed time step.

1. A motion model is generated upon movement of
the agent. The agent A moves according to a
control signal u and a perturbation n and updates
its state, A ← f(A, u, n). The motion model acts
as a mathematical model to reduce uncertainty
on the robot’s localization.

2. An inverse observation model is used to record
and map key features (known as landmarks)
throughout the play space. The inverse
observation model, a mathematical model, is used
as an automated solution to determine the position
of landmarks in the scene. The position of these
landmarks is provided by the data obtained by the
exteroceptive and proprioceptive sensors and can
be computed as Li = g(A, S, yi), where Li is an
observed landmark mapped by a sensor S.

3. As the agent A travels throughout the play space,
prior mapped landmarks Li are observed by means
of a sensor S, where yi = h(A, S, Li). A direct
observation model is used in updating both the
localization of the agent, as well as the localization
of all landmarks, ultimately producing an updated
measurement of yi.

Each of these three operations, in combination with an
estimator engine, can be used to build an automated
solution to the SLAM system. In the case of FoosBall
implementation, a Kalman filter is used as the estimator
engine.

September 1, 2016 of 8 11

G. FoosTable Cloud-based Policy System
Implementation

As the number of FoosTables grows, so too will the
corresponding behavioral fragments generated by each
game played. These discrete fragments contain specific
player motion / controller / ball-state sequences
captured as metadata before being used in the
behavioral fragment refinement process by the central
cloud based policy manager. These refined behavioral
fragments provided by the policy manager are used in
turn to optimize the corresponding AI’s player persona.
Not only will a secure database need to be utilized in this
effort to record all games played, but so too will a system
be required which enables secure transmission of the
corresponding data between the reinforcement based
“fast” AI found on each FoosTable and a central cloud
based “slow” policy manager.

Deployment of a Blockchain system is used to fulfill
these requirements. The Blockchain operates as a
private game ledger, not only functioning as a scalable
database but providing a means to transmit, and
consequently, validate the block of data sent. In the case
of the fast AI based FoosBall table, each table acts as a
node in a larger network. Once a game is completed,
that table transmits the game metadata through the
network connect ing a l l FoosTables . Once a
supermajority of nodes agrees on the validity of the
game played, the game is captured and the
corresponding metadata transmitted to the cloud.

Game validation is a critical component when recording
games played. As a private ledger, the identity of all
parties is known to all nodes on the network. This in fact
adds a layer of security as, in the case of a rouge/
malicious actor, attempting to tamper with the table can
be pursued and removed from the network.

Once the cloud based policy manager has determined
the next course of action, the Blockchain is used to
securely pass the refined behavioral fragment data back
down to the originating foostable’s MAS.

VII. CONCLUSIONS

Behavioral Valence represents a new component
enabling AI augmented Human Interaction through
sophisticated policy coordination in a wide variety of
game or digital contexts. For instance, players operating
within a real time strategy game are “influenced” by an
AI Coordinator to focus on: farming policy, defensive
posture, expanding the housing stock, expanding the
transportation network, etc. Specifically, a system of
human driven players operating at the network edge are
augmented by a cloud-based policy coordinator
(planner), who evaluates and responds to situational
metadata provided by the multi-agents.

Future work regarding the implementation of a policy
planner is needed. For example, the question arrises
whether a planner must be based on RL, or if other
variations of planning algorithms are more appropriate.
Future experimental work is also needed to extend and
refine the realtime FSM implementation at the network
edge with synchronized metadata and reward
coordination.
Implementing agent behavior through fast learning,
augmented by slow policy coordination, offers developers the
ability to refine the performance of more traditional decision-
making mechanisms. Principally, this is achieved through
individual agents acting through stochastic Reinforcement
Learning techniques, coupled with a coordinator generating
near-term policy goals to also influence these per-agent
behaviors. In turn, an MAS sends situational feedback data to
the coordinator in order to inform the next epoch’s policy
choices. While individual agents remain driven by a
statechart / subsumption-based architecture, the addition of
rewards driven policy directives further enhances the
behavioral outcomes.  

September 1, 2016 of 9 11

Figure-1a: Berkeley’s RiseLab current AI worldview for both
Machine & Reinforcement Learning algorithms which are
located dominantly in the cloud

Figure-1b: Berkeley’s RiseLab foresees AI infrastructure becoming
more local to the network edge, in part, to address an
order magnitude increase needed in its performance

Figure-2a: Example of per-agent Brooksian subsumption layering in
the game environment Valence [14] with Activator / Inhibitor inter-

layer signalling

September 1, 2016 of 10 11

Figure-2b: Screen captures from the game environment Valence [14] showing a Procedurally Generated Agent (left) and Reactive AI Agents
(right) in-situ

September 1, 2016 of 11 11

REFERENCES

1. Alex "Sandy" Pentland is the Toshiba Professor at MIT where he directs
the Human Dynamics Lab. Pentland's research focuses on “social
physics”, big data, and privacy. His research helps people better
understand the "physics" of their social environments.

2. Social Physics — How Social Networks can Make Us Smarter, A.
Pentland, MIT Penguin Books, 2014 [Online]. Available: https://
www.amazon.ca/Social-Physics-Networks-Make-Smarter/dp/
0143126334.

3. “Simulations Show that Shame Drives Social Cohesion,” Klaus Jaffe,
Simon Bolivar University, Advances in Artificial Intelligence Conference
January 2006 [Online]. Available: https://www.researchgate.net/
publication/
220942816_Simulations_Show_That_Shame_Drives_Social_Cohesion

4. Daniel Kahneman is the 2002 Nobel Laureate in Economic Sciences
where as a psychologist in collaboration with Amos Tversky they
challenged the assumptions of human rationality embedded in the
decision-making prevalent in the economic theory at that time.

5. Thinking, Fast and Slow, D. Kahneman 2011 [Online]. Available: https://
www.amazon.ca/Thinking-Fast-Slow-Daniel-Kahneman/dp/0385676530

6. Prospect Theory: An Analysis of Decision under Risk, Daniel Kahneman
and Amos Tversky; Econometrica, March 1979 [Online]. Available:
http://www.jstor.org/stable/1914185

7. AlphaGo Beats Go World Champion, Christopher Moyer, The Atlantic,
March 28, 2016 [Online]. Available: https://www.theatlantic.com/
technology/archive/2016/03/the-invisible-opponent/475611

8. University of California, Berkeley, Department of Electrical Engineering
and Computer Sciences, RISE lab (Real-time, Intelligent, Secure
Execution) for Low Latency Inferencing, 2016 [Online]. Available:
https://rise.cs.berkeley.edu/

9. R. C. Schank, “What Is AI, Anyway?,” AI Magazine vol 8 no. 4, 1987
[Online]. Available: https://aaai.org/ojs/index.php/aimagazine/article/
view/623/556

10. Machines Who Think, P. McCorduck, A K Peters, Ltd., 2004 [Online].
Available: http://www.pamelamc.com/html/machines_who_think.html

11. Rodney Brooks is the Panasonic Professor of Robotics (emeritus) at
MIT. He is a robotics entrepreneur and Founder, Chairman and CTO of
Rethink Robotics. He is also a Founder and former CTO (1990-2008) of
iRobot Corp. Dr. Brooks is the former Director (1997-2007) of the MIT
Artificial Intelligence Laboratory and then the MIT Computer Science &
Artificial Intelligence Laboratory (CSAIL). He has published many papers
in computer vision, artificial intelligence, robotics, and artificial life.

12. R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,”
Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
1986 [Online]. Available: http://publications.ai.mit.edu/ai-publications/pdf/
AIM-864.pdf

13. Fast, Cheap and Out of Control, Errol Morris, Sept 24, 2002 [Online].
Available: https://www.amazon.ca/Fast-Cheap-Out-Control-Widescreen/
dp/B00003CX9Z

14. Jake Deugo, Tyler Dinardo, Laryssa Ribeiro Da Silva, Weri Sin, Zachary
Sullivan and Vishesh Thanki, “Valence - A Subterranean Game,”
Undergraduate thesis, School of Information Technology, Carleton Univ.,
Ottawa, ON, Canada 2016 [Online]. Available: https://
www.zacharysullivan.net/valence

15. Christopher Dragert, “Model-Driven Development of AI for Digital
Games,” Ph.D dissertation, School of Computer Science, McGill Univ.,
Montreal, QC, Canada 2015 [Online]. Available: http://gram.cs.mcgill.ca/
theses/dragert-15-model.pdf

16. D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, The
Weizmann Institute of Science, 1987 [Online]. Available: https://
www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/
statecharts.pdf

17. Steve Rabin, “AI Game Programming Wisdom 4,” Boston, MA Charles
River Media, 2008 [Online]. Available: https://www.amazon.ca/AI-Game-
Programming-Wisdom-4/dp/1584505230

18. K. Murphy, “A Brief Introduction to Reinforcement Learning,” Department
of Computer Science, University of British Columbia, 1998 [Online].
Available: https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html

19. Peter Molyneux, “Postmortem: Lionhead Studios' Black & White”,
Gamasutra, 2001 [Online]. Available: https://www.gamasutra.com/view/
feature/131476/postmortem_lionhead_studios_.php

20. The Belief-Desire-Intention Model of Agency, Michael P. Georgeff,
Barney Pell, Martha E. Pollack, Milind Tambe and Michael Wooldridge,
International Workshop on Agent Theories, Architectures, and
Languages, pp. 1-10. Springer, Berlin, Heidelberg, 1998 [Online].
Available: http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/
atal98b.pdf

21. Christopher J.C.H. Watkins, “Learning From Delayed Rewards,” PhD
dissertation, Department of Psychology, University of Cambridge, UK
1989 [Online]. Available: http://www.cs.rhul.ac.uk/~chrisw/thesis.html

22. Integrated architectures for learning, planning and reacting, Richard
Sutton, Proceedings of the Seventh International Conference on
Machine Learning, pp. 216-224, 1990 [Online]. Available: https://
pdfs.semanticscholar.org/b5f8/
a0858fb82ce0e50b55446577a70e40137aaf.pdf

23. Ioannis Partalas, Dimitris Vrakas and Ioannis Vlahavas, “Reinforcement
Learning and Automated Planning: A Survey,” Department of
Informatics, Aristotle University of Thessaloniki, 2008 [Online]. Available:
http://lpis.csd.auth.gr/publications/rlplan.pdf

24. RL-TOPs: An Architecture for Modularity and Reuse in Reinforcement
Learning, Ryan M. R. K, Pendrith M. D, 15th International Conference of
Machine Learning, pp.481-487, 1998 [Online]. Available: http://
citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.37.491&rep=rep1&type=pdf

Zachary Sullivan received a Bachelor of
Information Technology degree from
Carleton University, Ottawa, ON in 2016.
From 2013 to 2015, he was a Research
Assistant at Carleton’s School of Information
Technology working on a range of projects
including Robotic Hand Articulation utilizing
InMoov 3D printed components, as well as a
PTSD treatment strategy developed in
conjunct ion with the Department of

Psychology that utilized Unity3D™ immersive game technology to
facilitate coping strategies, using simulation environments, for
patients who experienced traumatic events.
Mr. Sullivan also has micro-simulation software experience
(Modgen) at Statistics Canada through a Research Assistant role
via the University of Ottawa and has extensive development
experience in web based UI / UX. He is an avid gamer with a
particularly strong interest in the application of AI to behaviors in
game simulations. He was the project lead of the six person team
that developed Valence: A Subterranean Game in 2016.

https://www.amazon.ca/Social-Physics-Networks-Make-Smarter/dp/0143126334
https://www.amazon.ca/Social-Physics-Networks-Make-Smarter/dp/0143126334
https://www.amazon.ca/Social-Physics-Networks-Make-Smarter/dp/0143126334
https://www.researchgate.net/publication/220942816_Simulations_Show_That_Shame_Drives_Social_Cohesion
https://www.researchgate.net/publication/220942816_Simulations_Show_That_Shame_Drives_Social_Cohesion
https://www.researchgate.net/publication/220942816_Simulations_Show_That_Shame_Drives_Social_Cohesion
https://www.amazon.ca/Thinking-Fast-Slow-Daniel-Kahneman/dp/0385676530
https://www.amazon.ca/Thinking-Fast-Slow-Daniel-Kahneman/dp/0385676530
http://www.jstor.org/stable/1914185
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611
https://rise.cs.berkeley.edu/
https://aaai.org/ojs/index.php/aimagazine/article/view/623/556
https://aaai.org/ojs/index.php/aimagazine/article/view/623/556
http://www.pamelamc.com/html/machines_who_think.html
http://publications.ai.mit.edu/ai-publications/pdf/AIM-864.pdf
http://publications.ai.mit.edu/ai-publications/pdf/AIM-864.pdf
https://www.amazon.ca/Fast-Cheap-Out-Control-Widescreen/dp/B00003CX9Z
https://www.amazon.ca/Fast-Cheap-Out-Control-Widescreen/dp/B00003CX9Z
https://www.zacharysullivan.net/valence
https://www.zacharysullivan.net/valence
http://gram.cs.mcgill.ca/theses/dragert-15-model.pdf
http://gram.cs.mcgill.ca/theses/dragert-15-model.pdf
https://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf
https://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf
https://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf
https://www.amazon.ca/AI-Game-Programming-Wisdom-4/dp/1584505230
https://www.amazon.ca/AI-Game-Programming-Wisdom-4/dp/1584505230
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.gamasutra.com/view/feature/131476/postmortem_lionhead_studios_.php
https://www.gamasutra.com/view/feature/131476/postmortem_lionhead_studios_.php
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/atal98b.pdf
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/atal98b.pdf
http://www.cs.rhul.ac.uk/~chrisw/thesis.html
https://pdfs.semanticscholar.org/b5f8/a0858fb82ce0e50b55446577a70e40137aaf.pdf
https://pdfs.semanticscholar.org/b5f8/a0858fb82ce0e50b55446577a70e40137aaf.pdf
https://pdfs.semanticscholar.org/b5f8/a0858fb82ce0e50b55446577a70e40137aaf.pdf
http://lpis.csd.auth.gr/publications/rlplan.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.491&rep=rep1&type=pdf

	INTRODUCTION
	The Problem With People
	The Problem With Machines
	Architecture
	What is AI?
	AI in Digital Games
	Statechart Modeling
	Improvements to Model-Driven AI Development
	Criticism of Learning in Digital Games
	Dynamic Agent Behavior Implementation
	Implementation: Fast Reinforcement Learning Through Slow Policy Creation
	FoosTable Multi-Agent System Implementation
	FoosTable Cloud-based Policy System Implementation
	Conclusions
	References

